Search results for "admissible manifolds"

showing 2 items of 2 documents

Partial data inverse problems for Maxwell equations via Carleman estimates

2015

In this article we consider an inverse boundary value problem for the time-harmonic Maxwell equations. We show that the electromagnetic material parameters are determined by boundary measurements where part of the boundary data is measured on a possibly very small set. This is an extension of earlier scalar results of Bukhgeim-Uhlmann and Kenig-Sj\"ostrand-Uhlmann to the Maxwell system. The main contribution is to show that the Carleman estimate approach to scalar partial data inverse problems introduced in those works can be carried over to the Maxwell system.

Inverse problemsELECTRODYNAMICSINFORMATIONadmissible manifoldsWEIGHTSMathematics::Analysis of PDEsBoundary (topology)InverseBOUNDARY-VALUE PROBLEMCALDERON PROBLEMpartial data01 natural sciencesMATERIAL PARAMETERSinversio-ongelmatsymbols.namesakeMathematics - Analysis of PDEsFOS: Mathematics35R30 35Q61111 MathematicsMaxwellin yhtälötBoundary value problemUniqueness0101 mathematicsPartial dataMathematical PhysicsMathematicsAdmissible manifoldsApplied Mathematicsta111010102 general mathematicsMathematical analysisScalar (physics)Inverse problemCarleman estimatesSmall set010101 applied mathematicsUNIQUENESSMaxwell's equationsMaxwell equationsLOCAL DATAsymbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct

Partial data inverse problems for the Hodge Laplacian

2017

We prove uniqueness results for a Calderon type inverse problem for the Hodge Laplacian acting on graded forms on certain manifolds in three dimensions. In particular, we show that partial measurements of the relative-to-absolute or absolute-to-relative boundary value maps uniquely determine a zeroth order potential. The method is based on Carleman estimates for the Hodge Laplacian with relative or absolute boundary conditions, and on the construction of complex geometric optics solutions which reduce the Calderon type problem to a tensor tomography problem for 2-tensors. The arguments in this paper allow to establish partial data results for elliptic systems that generalize the scalar resu…

Mathematics - Differential GeometryPure mathematicsadmissible manifoldsType (model theory)partial data01 natural sciences58J32inversio-ongelmatMathematics - Analysis of PDEsFOS: MathematicsBoundary value problemUniquenessTensor0101 mathematicsMathematicsNumerical Analysisabsolute and relative boundary conditionsGeometrical opticsinverse problemsApplied Mathematicsta111010102 general mathematicsScalar (physics)Inverse problemCarleman estimates010101 applied mathematics35R30Differential Geometry (math.DG)Hodge LaplacianLaplace operatorAnalysisAnalysis of PDEs (math.AP)Analysis & PDE
researchProduct